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I 8 ABSTRACT 

A theoretical estimate is attempted for the effect of a compliant coating on turbulent boundary 
layer wall pressure fluctuations. The basic derivation shows that the problem reduces to one of 
finding the distribution in the wall plane of two correlations involving the wall pressure and its 
normal derivative. Exact expressions are derived for two-dimensional traveling wave pressure /ve- 
locity admittances of an isotropic elastic coating. These admittances are combined with some 
reasonable assumptions about the form of the pressure cross spectral density to yield approximate 
expressions for the two desired pressure/derivative correlations. Finally, two surface integrals of 
these correlations result in the wall pressure function in the presence of the compliant boundary. 
The calculations indicate that the compliant wall increases the mean square wall pressure at low 
speeds and decreases the pressure fluctuations at high speeds. Unfortunately, the reduction at 
high speeds probably cannot be achieved in practice because of the related mechanical problem 
of static divergence of the coatiLg. 
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A THEORETICAL ESTIMATE OF TURBULENT WALL PRESSURE 
FLUCTUATIONS ON A COMPLIANT BOUNDARY 

INTRODUCTION 

The problem of boundary layer behavior in the presence of a compliant 
boundary was brought to attention by the intriguing experiments of M. O. 
Kramer,'» V who demonstrated reduced drag on underwater towed bodies 
covered by flexible coatings.   Kramer intuitively ascribed the drag reduction to 
a transition delay provided by the dissipation of the compliant boundary.   Sub- 
sequent theoretical studies, using an extension of the Orr-Sommerfeld stability 
equation, verified the transition delay but indicated that the cause was not added 
dissipation but rather a profound modification of the disturbance-wave structure 
of the flow.   These linearized laminar stability studies were begun by Boggs 
and Tokita* and later improved and extended by Benjamin,6» * Nonv  üer,7 

Linebarger,8 Landahl,9 Hains,10 and Kaplan. "   Kaplan's thesis summarizes 
the previous work and contains extensive numerical stability calculations for a 
variety of model compliant boundaries. 

Although the linearized theories definitely predict transition delay, the ex- 
periments which have followed Kramer's pioneering work have met only mixed 
success.   The measurements of VonWinkle, n Boggs and Frey,lä and Laufer 
and Maestrello14 do not yield a definitive interpretation, largely because the 
transition delay, if it exists, is difficult to separate from whatever effect the 
coating might have on the fully turbulent region.   It is hoped that measurements 
in the new water tunnel at the Underwater Sound Laboratory might clarify the 
matter. 

The fully turbulent boundary layer in the presence of a compliant surface 
presents a formidable theoretical challenge.   The sound radiated by turbulence 
near a flexible boundary has been estimated by Ffowcs Williams and Lyon,I6 

and the Reynolds stress very near the surface has been studied by Ffowcs 
Williams.16   To the authors' knowledge, there has been no theoretical study of 
turbulent wall pressure fluctuations at a compliant boundary, and it is the intent 
of the present report to present such a theory.   The general development here- 
in can easily be sifted for qualitative information.   However, to produce quan- 
titative results, the analysis has resorted to a series of approximations which 
probably reduce the final calculations to the status of a fairly crude estimate. 



BASIC ANALYSIS 

The basic problem of turbulent, boundary layer, wall pressure fluctuations 
has been the subject of intense experimental study over the past decade for the 
particular case of a rigid wall.   Corcos " gives an excellent review of the many 
published measurements of fluctuating pressure on a rigid wall.   Probably the 
most accurate of these measurements are those of Bakewell et al.18 and Will- 
raarth and Wooldridge,19 and it will be necessary to use these data in the anal- 
ysis which follows.   To the authors' knowledge, no measurements of fluctuating 
pressure at a compliant wall have appeared in the open literature. 

Although measurements abound, theoretical work on turbulent wall pres- 
sure is laclcing.   Based on an approach suggested by Gardner, 20»21 a complete, 
though rather approximate, theory of the space-time distribution of rigid wall 
pressure has been given by White. 22   White's analysis indicates that the sta- 
tistical properties of pressure at a rigid wall are primarily affected by the 
shape of the mean velocity profile in the boundary layer.   In particular, White's 
results predict that the longitudinal space correlation is affected significantly 
by the mean velocity profile, while the lateral correlation, the power spectrum, 
and the convection speeds are affected very little.  Actual measurements seem 
insensitive to profile shape, a phenomenon Corcos17 calls "space-time simi- 
larity," although recent data by Schloemer2* for pressure gradients indicate 
some profile effect, particularly on the power spectrum.   This apparent overall 
insensitivity of rigid wall data is exploited in the present analysis. 

The fluctuating pressure   p   may be calculated in principle for incompres- 
sible flow of a Newtonian fluid by taking the divergence of the Navier-Stokes 
equations, yielding the Poisson equation 

V-p=-rS(X,t) (1) 

where the function S is a complicated combination of velocity derivatives and 
t is time. The actual form of S is given by White22 and is not important in 
the present study. The position vector X has coordinates (Xi,x2,x;j) which 
are sketched in Fig. 1.   The freestream flows in the   x,    direction. 

The formal solution of Eq.    (1)   for pressure at the wall    (x2  = 0)    is 
given by Green's function integral solution: 
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P (X,t) _     9 

jr., = 0 " "  2w Jo     JJ-*. |x — zj 

(2) 

2*JJ-X \x-z\ 

Note that the second integral in Eq.   (2)  requires knowledge of a boundary con- 
dition in the form of the normal derivative of   p   at the wall.   For a rigid wall» 
this derivative is negligibly small, by analogy with boundary layer theory, as 
Kraichnan24 has shown.   Thus, the rigid wall pressure is given simply by the 
first integral, which involves only the source term   S.   If we accept the exper- 
imental evidence that the wall-pressure correlation is insensitive to the form of 
S, then the effect of a compliant wall must be primarily due to changes in the 
boundary condition on   p.   It is the purpose of this report to investigate how the 
compliant surface might affect the normal derivative of   p   at the wall, so that 
the mean value of the second integral in Eq.    (2)    might be evaluated, at least 
approximately. 

To shorten the expressions which follow, let   P   denote wall pressure   p,(. 
and let us rewrite Eq.    (2)   with the following tighter notation for the double 
and triple integrals: 

2ir Jx. - o \ "dZ-iJ \Jjr   £ lit Jx, > 

SdZ 
r~Ti (3) 

If we define the wall-pressure, space-time correlation by the relation 

R(X,X',t,t') = P(X,t) P(X'.t')   , (4) 

where the overbar denotes the time average in the statistically stationary sense, 
then, by substituting into Eq. (3) and performing the time average underneath 
the integral signs, we obtain 

/ 
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where the integrals involving   P   are to be evaluated in the planes  (z2,z2' = 0) 
and the integrals involving   S   zre evaluated in the infinite half space above 
this plane of the wall.   After inspection, we find that the first two integrals on 
the left-hand side are identical because of symmetry in a plane. 

It should be noted that the right-hand side involves the source terms   S 
which occur in the boundary layer flow past whatever type boundary is under 
study.   That is, if we seek to use Eq.    (5)   to calculate   R   for a compliant 
surface, then   S   should be the source function for flow past a compliant sur- 
face.  It is at this point that we use the experimental insensitivity of the source 
function, previously discussed, to postulate that the right-hand side of Eq.   (5) 
is essentially identical to   R0,    the pressure correlation in the presence of a 
rigid wall.   This assumption, although reasonable, cannot be verified until data 
are available for mean and fluctuating velocities in the boundary layer past a 
compliant surface.   Apparently Professor J. Lumley at the Pennsylvania State 
University is presently making such measurements.   The question is also being 
examined theoretically at present by the second author as a thesis for the Uni- 
versity of Rhode Island. 

Combining the first two integrals in Eq. (5) and utilizing the assumption 
that the source integral is equal to R0, one obtains the following basic rela- 
tion for calculating; the wall pressure at a compliant surface: 

dP' A?, r   /.   dP  dr 

(6) 
/p -^- dz'        ,    r r -s£- ^—dz dz' 

dz'-, __ _L /   /     3za dz', 

\X' ~Z'\ J   J    \X-Z\\X'-Z' 

At first glance, Eq.    (6)    might appear to predict that the compliant wall cor- 
relation   R   is always less than the rigid wall value   R0.   However, we shall 
see that the first integral is usually negative, while the second integral is posi- 
tive, with the result that the effect on   R   is rather mixed. 
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From Fig. 1, a streamwise plane traveling pressure wave would have the 
following complex form for any given frequency   u> : 

TRAVELING WAVE ADMITTANCES 

Since   R„   is known from experiment, the evaluation of   R   from Eq.   (6) 
can be accomplished if the correlations involving   P   and its normal derivative 
can be estimated.   To do this, we must investigate the properties of an idealized 
elastic coating.  All available experiments indicate that turbulent boundary 
layer fluctuating pressures have approximately the form of traveling waves 
moving in the   x,    direction with a convection velocity   Ue    somewhat less 
than the ü eestream velocity   UB .  Naturally, there is a certain amount of con- 
vective incoherence, since the pressure waves as they move downstream are 
undergoing continuous decay and regeneration.  No attempt will be made here 
to reproduce this effect; that is, the fluctuating pressures will be treated as a 
simple summation of traveling waves of different frequencies.  A second diffi- 
culty is that the actual turbulent pressures are not plane waves but instead have 
some unknown variable shape in the lateral    (x3)   direction.   This analysis 
will treat the case of plane waves and then attempt belatedly to introduce a 
three-dimensional effect by use of the measured lateral spectra of wall pres- 
sure. 

Consider a compliant coating of thickness   h,    backed up by a rigid under- 
surface, as shown in Fig. 1.   Several studies have been made of the response 
of such a coating to a plane traveling wave for a Hookean isotropic coating, as- 
suming small strains.   The analytical results are in the form of traveling wave 
admittances, which are amplitude ratios of coating velocity to traveling wave 
pressure.   Following a suggestion of Nonweiler,7 Kaplan11 calculated admit- 
tances by assuming a condition of plane stress in the coating, wlule Tokita and 
Boggs25 gave admittances for the case of plane strain.   Both Kaplan's results 
and those of Tokita and Boggs contain algebraic errors which, hopefully, have 
been eliminated in the present report.  Also, Tokita and Boggs, by expanding in 
a series and truncating, gave approximate admittances (equation   7b9 of Ref. 
25) which they later used in a study of coating stability.26    However, numerical 
evaluation of exact admittance formulas shows that these approximations are 
valid only for a small range of frequencies and hence will not be used here. 

As is usual in elasticity theories, there is no great difference between the 
plane stress admittances and the plane strain results.   Let us reproduce a plane 
stress analysis, similar to that of Kap1 an, u  comparing the final resulls ob- 
tained with those of Tokita and Boggs25 for plane strain. 



iJ^- - !\ m (jt, -Urt) 
- P» *     \U,      / -P»e (7) 

where   Ur    is the convection speed and    « =   w/Ur is the wave number.   Let 
H    be the coating displacement in the   x,    direction and    i|    be the displace- 
ment in the   x2    direction.   Let the elastic coating have shear modulus    G, 
Poisson's ratio   n,    and Young's modulus    E = 2G(1 +  n).   Then the equations 
of elasticity for plane stress are 

Fll 

P«       ,  — 
9<-        9*i 

,   9"IJ 

9*. 

9->i       9"i2 

"' 9*2  ~   9*. 
■    9o2y 

9*2 

91. 
9*1' 9*2 9*1       9*2 

£eii = Oj, - - H«22 

Et-,-< = a_>2 - - no,, 

GE^. = ai_>. 

(8) 

Equation    (8)    contains eight linear algebraic and differential equations in the 
eight variables    on, oÄ, a,:!, E,,, E-., F,L>, i|, and |. The stresses and strains 
may easily be eliminated in favor of the two displacements for which boundary 
conditions are known at the upper and lower surface of the coating.   Since the 
system is linear and the driving force is a traveling wave (Eq. (7)), it follows 
that the resulting displacements must also be traveling waves with amplitudes 
which vary through the thickness.   Hence we postulate that 

„  .   ,    m (xi -- V,t) 
5 {xux2, t) — l„(Xj) e 

(9) 

/ ,V (r\      /U(-Vl  -~Ult) 

The exponential expressions will cancel properly from the equations of motion, 
leaving a single ordinary fourth order linear differential equation in   >)„ (x-,): 

«" (rr + ''2" * »1»" + «' r\~ r2" *I» - () - (10) 
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where the constants r,  and r,   are related to the ratio of the convection speed 
Ur    to the coating shear wave speed   C. = \/ G/P„     

as follows: 

r,- = 1 - Vi (1 -H) Ur-/C;- 
(11) 

r.i- = l - ur-/c;-. 

The primes in Eq.    (10)    indicate differentiation with respect to   x2.  An equa- 
tion identical to Eq.    (10)    holds for the other displacement,      Ho. 

The general solution of Eq.    (10)    is 

ij„ = /l,sinh {ar\x-, ) + A-j cosh (or, jr_,) 4- A :t sinh (ar_.x-.) -f A 4 cosh (ar2x-,) t (12) 

where A!—A4 are constants. Assuming that the coating is securely bonded 
+o the rigid under structure, the boundary conditions at the lower surface state 
that the displacements must vanish: 

!„(-/») = .|„(-ft)=o. (13) 

At the upper surface, the vertical normal stress in the coating must equal the 
traveling wave pressure: 

n.,,(0) -■ 
2G dn   , .. 3H 

~dx-i ~dx\\x.-a 

l^f- = -/>. (14) 

A simple and realistic fourth boundary condition is achieved by setting the shear 
stress equal to zero at the upper surface: 

-3L _|_ Jll - 0 at xo - 0 . (15) 

Actually, the shear stress at the upper surface does not vanish but instead must 
equal the fluid shear stress in the boundary layer at the wall,   xw.       However, 

r,r    is small, and the fraction of     xw     assigned to any given traveling wave 

•vmuwiviMttto-v -v   :-■- ■^■>^;rJäkit^X*^^'^Ä-t:-TII«-i«^äQ^^ 
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must be very small indeed.   Hence this refinement is not considered to be nec- 
essary for an accurate calculation of the admittance of the coating. 

Equations   (13),    (14),    and   (15)   are sufficient to define unique values 
of the four constants   A,    in Eq.    (12).   Since we will ultimately be concerned 
with velocities at the upper surface, it is convenient to give the solutions in 
terms of the admittances   Yn    and   Ye, defined as follows: 

Y„ 
P  \   d' /*•: 

1 / »E \ (16) 

P   \   d*  /*: = 0 

The negative sign in the definition of   Yn    is traditional.   Unfortunately, the 
admittances, although defined as ratios, are not dimensionless.   It will be con- 
venient to use the dimensionless group      (P, C, Y) ,    which is a function of the 
dimensionless parameters    r,,    r,,,    and    («h).   The normal admittance is 
given by the expression 

C. Y„ = -if|((/^  (17) 
2 (1 +r/) A, -L4r1r,/4:, 

The constants   A2    and   A4    have been incorporated into Eq.    (17), but the 
expressions for   A,    and   A.,    are rather lengthy.   If we adopt the short no- 
tation 

d — cosh (ur,7i) 
for; =1,2, (18) 

Ti ~ tanh (<tr,7i) 

then   A,    and   A:,    may be written as follows: 

! - r, r, T} T, - Vi (1 + r.f) (1 - T{-) CJC, 
A,= 

A, = 

T, - r, r, 7, 
(19) 

(I - AH T.,) Ca/Ci - Vi (1 -f r,'-') 
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In the limit as   (ah)   approaches infinity,    T\    and   T2    approach unity. 
By inspection, we see that   A3   will approach unity and   A,    becomes 
~% (1+r2).   From Eq.    (17),    the admittance will approach the limiting value 

F.c.y.(«)=    -ir,(Ur/cKy    m 
4r, r-, — (1 + rr)'- 

The denominator of Eq.    (20)   becomes zero, giving infinite    Y„,    at a speed 
ratio    (Ur/C.) varying from 0.874 for    \i = 0   to a value of 0.933 for   n = 0.5. 
For speeds less than this critical value, the denominator is positive, and Eq. 
(17)  predicts in general that   Y„    will be a pure negative imaginary quantity 
for any subcritical speed. 

Equation   (17)   applies for a coating which is perfectly bonded to the un- 
dersurface ,   i.e., it satisfies Eq.    (13).   If one relaxes this condition, a much 
simpler expression for   Y„    results, as shown by Kaplan."    Instead of being 
bonded, we could postulate that the coating slides without shear along the lower 
surface, satisfying the following conditions: 

M(-/J)^-^-(-/J)=0. (21) 
9*2 

The use of Eq.    (21)   instead of Eq.    (13)    gives a much simpler normal ad- 
mittance, which we term the "shearless" coating result: 

p. C, Y„ (shearless) = """' (t/r/C,)''     — • (22) 
4r,r,/T2-(l+r./)V7*, 

Clearly, the limit of Eq.    (22)    as    (ah)    approaches infinity   is identical to 
Eq.    (20)    for the bonded coating.   In general, for a given subcritical speed, 
there is no great difference between the bonded and the shearless coating over 
the entire frequency range, as Fig. 2 shows, using   n = 0.5 as an approxi- 
mate value for natural rubber.   As Fig. 2 indicates, the shearless admittances 
at low frequencies are about twenty per cent higher than the bonded values. 
The high frequency asym   otes are identical. 

The tangential admittance    Y(    as defined in Eq. (16) may also be calculated. 
The result for the bonded coating is 

mmmmm •*** -*-*■ 



fa C„  If 
2nr.jA3 + A, (1 + r,-) 

(23) 

where   A,    and   As    are again defined by Eq.   (19).   Once again a simpler 
expression results for the "shearless" coating: 

A»»C Y, (shearless) =• (Ur/C) (2r,r3-(l + rS) T.JTt) 
4r,r,-(l +r.f)-T.i/Tx 

(24) 

As before, the admittance is slightly larger for the shearless coating as-com- 
pared to the bonded value.   Figure 3 compares the tangential and normal admit- 
tances for ;he shearless coating for   n = 0.5.   The asymptotic values of   Y, 
are roughly one-half of the asymptotic magnitude of   Y„    for the same speed 
ratio.   The tangential admittance suffers a singularity at the same "critical" 
speed ratio as    Y„,    as listed in Table 1. 

Table 1 

MINIMUM SPEED RATIO FOR AN ADMITTANCE SINGULARITY TO OCCUR 

Poisson's Ratio Minimum (U^/C.) 

0.0 0.8740 

]                               0.1 0.8913 

0.2 0.9052 

0.3 0.9162 

0.4 0.9252 

0.5 0.9325 

10 
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As we shall see in the next section, the evaluation of Eq.   (6) for a rea- 
sonably thick coating (of the order of the boundary layer thickness) depends 
only upon the asymptotic values of Yn.    Figure 4 shows the magnitude of these 
asymptotic admittances for subcritical speeds.   Note that, for low speeds, the 
asymptotic admittances vary linearly with speed ratio. 

ADMITTANCE SOLUTION FOR PLANE STRAIN 

The previous theoretical admittances, Eqs.   (17)  through  (24),   are de- 
rived for the assumption of plane stress (zero stress in the    z    direction). 
The analogous solution for plane strain (zero   z    displacement) was given by 
Tokita and Bcggs,"  following a somewhat more complicated analysis, using 
the three-dimensional wave equation which results from the definition of the so- 
called "displacement potentials." The boundary conditions used were Eqs.  (13) 
and (15), that is, a tightly bonded coating.  An exact expression for the admit- 
tance was not given but can easily be calculated from equation  (7b6)  of Ref. 25. 
The parameter    r2    is the same as for plane stress, but the quantity   r,    is 
slightly different.   That is, 

r,*- = 

r./-l- t/,.-/C,- 

viJi^M^/c.*. 
(25) 

(1 -n) 

where the asterisk is included in r, as a reminder that it is the plane strain 
value. Using this notation, the exact expression for the normal admittance for 
plane strain in a bonded coating is 

pg Cx Y„ — 

-/r1*(t/,/C)H(r,*-r1*r,r2) 
(26) 

4r,* r3 (1 - r,* r, 7",* 7",) - (1 + ra
s)a (r,* r, - 7",* T-.) - 4r,* r2 (1 + r^)/C,* C, 

where   T,    and   C,    are as defined in Eqs.   (18).   Figure 5 compares values 
of   Y„    from Eq.   (26)  to equivalent values for the plane stress case, Eq. 
(17).   For a given speed ratio, the plane strain admittance is somewhat smaller 
and has a lower asymptote.   The high frequency asymptote of Eq.   (26)  is 

t>* C. Y„ ( QC ) = 
-/>,« (Ur/c,y< 

4r,«ra-(1 +rr)- 
(27) 

which is identical in form to Eq.   (20) for the plane stress case.   Table 2 gives 
a comparison of these asymptotic values. 

11 
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Table 2 

ASYMPTOTIC NORMAL ADMITTANCES       (P,C, Y, (oo)//)   FOR    n = 0.5 

u/c. PLANE STRESS PLANE STRAIN 

0.2 - 0.1374 -0.1031 

0.4 - 0.3038 -0.2282 

0.6 - 0.5676 -0.4232 

0.7 - 0.8118 -0.5950 

0.8 - 1.3406 -0.9302 

0.85 - 2.0189 -1.2926 

0.9 - 4.6190 -2.2262 

0.91 - 6.4855 -2.6433 

0.92 -11.3029 -3.2873 

0.93 -54.1007 -4.4247 

Although the plane strain values in Table 2 are substantially smaller in mag- 
nitude, we shall see that this has no great effect on the wall pressure analysis 
which follows.   However, since a practical coating construction would probably 
be constrained in a manner somewhere in between these two extremes, one can 
look upon Table 2 as a measure of the uncertainty involved in a theoretical esti- 
mate of the actual coating response to traveling waves. 

As mentioned before, Ref. 25 did not attempt to calculate the exact plane 
strain admittance as given by Eq.   (26).   Instead, Tokita and Boggs appro-i- 
mated the hyperbolic functions by the first two terms of their Taylor series ex- 
pansions.   The result was an approximate admittance expi^ssion (equation (7b9) 
of their report).   In the present notation, this approximation is written as 

12 
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CY^ ~ 2 "'' £ , (28) p« C"    " ~ 3 (a- h- - 2) ((/,-/C.- - *-*) 

where 
4 a- A- 

*-' = 
a-/i-(3 -4ji) -4(1 -ji) 

Figure  6 compares the exact admittance from Eq.   (26) with the approximate 
value, Eq.   (28),   for the case    (Uf/C,) = 0.5 and      n   = 0,5.   It is seen that 
Eq.   (28) is accurate only for a small intermediate frequency range.   Note that 
Eq.   (28) fails to predict a constant asymptotic admittance at high frequencies. 
The approximate admittance, although apparently rather crude, was used by 
Tokita and Boggs in Ref.   26 to predict the mechanical stability (static diver- 
gence and flutter) of a compliant coating.   Since their calculations were rather 
complex and also involved further approximations, it is not clear exactly what 
quantitative effect the error inherent in Eq.   (28) would introduce into the re- 
sults of Ref.   26. 

Finally, we may note that, for "supercritical" speeds (greater than those 
in Table 1), all of the admittance expressions possess multiple singularities. 
Since Ref.   26 predicts a statically unstable coating at such speeds, no super- 
critical calculations were made in this report. 

PRESSURE DERIVATIVE CORRELATIONS AT THE COMPLIANT WALL 

The chief result of the basic analysis section of this report was to show 
that the problem of estimating compliant surface pressure fluctuations reduces 
approximately to the evaluation of Eq.   (6).   The first integral in Eq.   (6)  can- 
not be evaluated until we know the distribution of the correlation function 
P (dP,)/dx*   in ^e plane of the wall.   The second integral requires knowledge of 
the correlation(gp dP')/(d*u 3^')in the wall plane.   It is the purpose of this sec- 
tion to show that these correlations can be reasonably approximated, using the 
traveling wave admittance approach. 

It is obviously necessary to the admittance approach that we assume that the 
turbulent pressure disturbances are in the form of a superposition of many 
small traveling waves having different amplitudes and frequencies.   This is 
certainly not true on an instantaneous basis.   That is, turbulent pressure fluc- 
tuations suffer by nature a convective incoherence.   The disturbances are con- 
stantly decaying and being regenerated as they move downstream with a con- 
stantly changing convection speed.   It is only on a time-averaged basis that the 
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pressure simulates in any way a sum of traveling waves.   Some evidence of 
convective incoherence persists even on a time-average basis.   For example, 
the convection speed   Ur    is not truly constant but instead varies with the fre- 
quency and with the spacing between correlated points.  Also, the sharp de- 
crease in the pressure correlation with lateral spacing indicates that the as- 
sumption of plane traveling waves is not very accurate, even on the average. 
However, it is fortuitous that these deviations from ideal traveling wave 
behavior do not have a strong effect on the behavior of a compliant boundary, 
because, as the calculations will show, the compliant wall responds in an ex- 
tremely localized fashion to the pressure disturbances.   That is, the correla- 
tions needed in Eq.   (6)  drop off so rapidly with distance that their effect on the 
calculation of   R   in Eq.   (6) is confined to a small local region whose diam- 
eter is less than a boundary layer thickness.   Under these conditions, the con- 
vective incoherence, which occurs on a somewhat larger scale, does not cause 
any great error in the analysis. 

The normal derivative of   P   is related to the velocity components through 
the normal component of the Navier-Stokes equations: 

9f. 
3*. 

du-- 

d' 
+ Wl 

du- 

dX\ 
+ U.j 

du-- 

3-t, 
—  H   V2  (»!') (29) 

For a iigid wall,    u,    and u2   both vanish at the wall, leaving only the viscous 
term on the right-hand side of Eq.   (29).   As mentioned before, Kraichnan21 

showed this viscous term to be negligibly small for a rigid wall.   However, for 
a compliant wall, none of the velocity terms in Eq.   (29)  vanish, and care must 
be taken to ascertain their magnitude.   The no-slip condition should still be 
valid, so that the fluid velocities at the wall must equal the surface velocities in 
the coating, which in turn are related through the admittance functions to the 
fluctuating wall pressure.   The use of coating velocity instead of fluid velocity 
allows us to ignore the interplay between the fluid's mean and fluctuating veloci- 
ties - an interplay which has caused erroneous results in stability studies, e.g., 
Ref.   4. 

To evaluate the terms in Eq.   (29), consider first a single traveling wave 
of amplitude    P„.   Using the admittance concept, one can calculate the ampli- 
tude of the normal acceleration at the coating surface: 

3ÜS 
d' 

Y„ wP„ (30) 
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In a similar manner we obtain an estimate of the first convective term in Eq. 
(29): 

9«. 
9*i 

Y„Y, aP„ (31) 

Let us denote the dimensionless tangential admittance by the symbol 
Y«* = P . G, Yt.   Then the ratio of these two terms is, approximately: 

9ga 
9*i 

9"2 
~   Yt* 

P„ 
: C.   U,. 

(32) 

From Fig. 4,   Yt    is less than 5 for  Uc/C, less than 0.8, while the dimen- 
sionless pressure amplitude P0/(^„ C.U,.) is much smaller than unity.   Then, 
for a single traveling wave, the first convective term is negligibly small com- 
pared to the local normal acceleration.   Then, by superimposing a large number 
of traveling waves, one arrives at the root-mean-square approximation: 

urn 
(?) 

= &(Y<*   
Prm* ) WV    P,C,UJ 

(33) 

All available measurements indicate that the root-mean-square turbulent pres- 
sure    Prma     =   0.003   p UJ,     where     p    is the fluid density and   U«,    is 
the freestream velocity.   Thus, the dimensionless pressure in Eq.   (33)  is a 
very small fraction for subcritical speeds, making the first convective term 
negligible.  A similar comparison of the second convective term to the local 
acceleration yields exactly the same order of magnitude estimate as that of Eq. 
(33),   so that this term is also quite small.   Finally, the ratio of the viscous 
term in Eq.   (29)  to the local acceleration is found to be of order   c/f    the 
local skin friction coefficient.   Since    cf   for a turbulent boundary layer is ap- 
proximately 0.005 or less, the viscous term is also negligible.   Clearly, then, 
the pressure normal derivative in Eq.   (29) is dominated by the local normal 
acceleration, and an accurate estimate to the first of the two desired pressure 
correlations is: 
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pj£-*-pp3üL. (34) 

To evaluate Eq.   (34),  we note that, for a single traveling wave, the correla- 
tion between   P   and the normal acceleration would be 

3«2 iY.mP.*. (35) 

To generalize this expression to a :omplete distribution of traveling waves, we 
make use of the space-frequency correlation    r    of the wall pressure, which 
is the Fourier transform of the space-time correlation   R   defined in Eq.   (4); 

R (t n, /.) = fK T (|, T|, (o) e ''"" dw , (36) 
•/— oo 

where      I ,      n ,    and   t0    are the longitudinal separation, the lateral sepa- 
ration, and the time delay between the two correlated boundary points, respec- 
tively.   Utilizing this function    r    to generalize Eq.   (35), we obtain the fol- 
lowing expression for the first desired pressure correlation function: 

p *r JSL--1,  C*   uY.re"""^, (37) 

where   Y„    is taken to be frequency dependent as given by Eq.   (17),   for ex- 
ample, for a bonded coating.   Equation  (37)  is not an exact representation un- 
less   Y„   is given spatial properties to account for the fact that turbulent 
pressure disturbances are not purely plane waves.   The authors have not at- 
tempted to introduce such a sophisticated admittance function into this analysis, 
arguing in the previous paragraphs that the "localized" behavior of the coating 
makes a spatially distributed admittance unnecessary. 

Extensive measurements are available for the frequency correlation    V „ 
for the case of a rigid wall.   For zero separation,    V0     reduces to the power 
spectrum   </>»  =   r„ (o, o, w).       The data of Ref.   18  show that the dimension- 
less power spectrum (&, Ux/b t,,-) is essentially a function of the 
Strouhal number       ((ob/Ux),        with negligible Reynolds number effect.   Let 
<t>*   and     a»*   denote these two dimensionless variables,   Figure  7  shows 
the data of Bakewell etal.,18   compared with the simple empirical formula 
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, * ^  016  /ggv 
1 + .012 <ü*-' + .0000036 a)*4 ' 

Equation (38) is convenient for the calculations which follow.   For example, 
the area under the   <*>*   curve equals the dimensionless mean square pressure, 
as Eq.   (36)  shows.   Equation  (38)  may be integrated exactly to give the re- 
sult      Prw,   =   2.0 T„, ,      which is the commonly accepted experimental value 
without a transducer-size correction.   Let us now define dimensionless vari- 
ables: 

P* = P/x„, 

y* = x.,/b 

r* = r uj(b xK-) (33) 

Y„* —. p„ C, Y„/i 

t* = t0 UJb , 

In terms of these variables, Eq.   (37)  may be rewritten in dimensionless form: 

P* ^ = JL J£L  f a)* YS r* eim' " do>* (40) 
dy*'      p,    C.  J_K 

We note from the coefficient of the integral that the correlation must, for a given 
value of the ratio   (h/ b ),    be proportional to the fluid density and free stream 
velocity, i.e., the mass flow per unit area past the coating. 

In an exactly similar manner, we arrive at a dimensionless expression for 
the second desired correlation function: 

dy* dy*      \p»   Cj   J_ „ 

indicating that this correlation is proportional to the square of the mass flow 
past the coating.   As the next section shows, the integration is somewhat com- 
plicated by the fact that   Yn *   and    r *   depend on system parameters other 
than simply the frequency    u> *, 
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NUMERICAL EVALUATION OF COMPLIANT COATING INTEGRALS 

In carrying out the integrations given in Eqs. (40) and (41), we first note 
that the argument of Y„* is not simply w * but instead involves the coating 
thickness and the convection speed.   That is, 

Y„* = Y„* Uoh/U.) = Y„* [(0* (hß) (Ux/Ur)]. (42) 

For a given Reynolds number and pressure gradient, the ratio    (Ux /U(.)    is 
roughly constant, with a value varying from approximately  1.0  for a high 
Reynolds number and/or favorable pressure gradient to a value of about  2.0 
for a low Reynolds number and/or adverse gradient.  References  17,   18,   19, 
and 23 give measured values of this ratio for various flow conditions.   For a 
given flow, then, Eq.   (42)  shows that the function   Y„*    shifts to the rignt 
along the    w *   axis as the thickness ratio    (h/h )    decreases.   This effect is 
sketched in Fig. 8, which compares    Y„*   for various thicknesses to the re- 
mainder of the integrand of Eq.   (40).   Since, as already noted,    Y„* has an 
asymptotic constant value, the value of the integrand will approach a constant 
distribution no matter how much the coating thickness is increased.   In prac- 
tice, an increase of the coating thickness beyond    (h/b ) = 1.0 has little or no 
effect on the integration.   Thus, according to the present analysis, a coating 
designed for noise attenuation need not be more than the thickness of the* bound- 
ary layer itself. 

The cross spectral density     I"    varies considerably with the spacing co- 
ordinates      £    and      >i .   For a rigid wall, Corcos27 suggests the following 
empirical formula which approximates the existing data: 

T„* = d>„* exp [ - (co/[/,) ( + 0.11 I + 0.60 .| + i I)], (43) 

where the subscript    "0"    indicates the rigid wall case.   As a first approxima- 
tion to the evaluation, we assume that the compliant surface spectrum    I' 
required in Eqs.   (40) and  (41)   is identical to Eq.   (43)   except that the power 
spectrum   <t>*   has an adjustable magnitude: 

<t>*m»mK «*■  B (I + .012(0*- + .0000036(0**) , (44) 

where    B    =    0.16    for the rigid wall from Eq.   (38).   Although this seems to 
be a crude estimate a priori, the calculations which follow show it to be actually 
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quite accurate, so tnat a second approximation was not needed,   Non-dimension- 
aUzing the separations hy the boundary layer thickness, we have the following 
reasonable formula: 

r\„»„iB = *♦„*,,„, exp [ - (o* (UJU,) (al* + b i,* + i $•)] , (45) 

where   a    =   0.1.1   and   b    =   0.60, approximately.   Equation  (40)  be- 
comes 

P*2E1 P   Jy~^= (46) 

21!± r „* Yn* ,.,—• WM (-r + * >n cos Ia. (,n, _ Wx/Ur) V)]„ 
Ps Cg   Jo 

The integration is laborious but easily accomplished on a digital computer. 
Note that the integral depends upon only two parameters, which are the coef- 
ficients of   to *   in the exponential and cosine terms, respectively.   For a 
thick coating  (h^ ft),   Y„* may be taxen equal to its asymptotic value.   The 
maximum value of the integral clearly occurs for zero separation and zero time 
delay with a thick coating.   This maximum may be calculated exactly if   <t>*   is 
assumed to follow Eq.   (44).   The result is 

P* Ml)     = 319.4 (P UX/PB C„) Y„* ( x ) B , (47) 

which may be used to normalize the integral in Eq.   (46).   Figure 9 shows the 
resulting normalized correlation as a function of its two parameters.   This 
normalized space-time distribution is ready to be substituted into the first in- 
tegral of Eq.   (6)  as a contribution to the compliant wall pressure correlation 
R. 

In an exactly similar manner, Eq.   (45)  may be substituted into Eq.   (41) 
to evaluate the second desired pressure-derivative correlation.   The maximum 
value of this quantity again occurs at zero separation and time delay: 

£10     = 13J 75 [(p(/,/p„C) Y,+ (oc)J-fl. (48) 
dy*      dy*' /max 

Figure 10 shows the second desired correlation normalized by Eq.   (48).   This 
distribution is ready to be substituted into the second integral in Eq.   (6). 
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The evaluation of the two integrals in Eq.   (6)  is a tedious but straightfor- 
ward proposition.  All such laborious computations in this report were per- 
formed on the IBM 1410 computer at the University of Rhode Island.   The in- 
tegrals in this case are considerably simplified by the use of polar coordinates 
and the symmetry of the problem.   Let us consider first the special case 
R(0, 0, 0), the mean-square pressure at the wall.   Equation  (6)  after integra- 
tion yields 

7** = K** - 26.8 Q B - 23.5 Q* B , (49) 

where   Q = (p UJp, C,) YH* (oo). However, we note from direct integration of 
Eq.   (44) that 

7*» = 25 B, (50) 

which we may use to eliminate    B   from Eq.   (49).   The result is the following 
final estimate' for the general effect of the compliant coating: 

j^ ._ PS* (Thick (51) 
1 + 1.07(2 + 0.94 Q- ' Coating) 

The numerical constants  1.07 and 0.94 are not particularly accurate and a 
rounded value of unity would probably suffice for both.   For example, by at- 
tempting slightly different curve-fits to Fig. 7, both constants can be varied as 
much as twenty per cent. 

Since the factor   Q   is negative for subcritical speeds from Table 2, Eq. 
(51) indicates that the coating effect is mixed in character.   The mean wall 
pressure fluctuation is actually increased at low speeds and is decreased only 
for near-critical speeds.   If we assume an average value of 1.5 for the con- 
vection speed ratio    Uoo/Uc,   Eq.   (51)  may be plotted versus the speed ratio 
Uoc/C,   for a given coating.   Further let us assume that the coating has a spe- 
cific gravity of  1.0 and Poisson's ratio of 0.5.   Figure 11 shows the effect of 
the coating on the mean square wall pressure in this case for both plane stress 
and plane strain admittances from Table 2. 

Figure 11, while representing the central result of this study, is very 
probably only a qualitative estimate, because of the many approximations en- 
countered en route to its derivation. However, this analysis clearly predicts 
qualitatively that the coating increases the wall pressure slightly at low speeds 
and causes a dramatic decrease at higher speeds.   However, the dash-dot 
vertical line in Fig. 11 shows the prediction of Ref.   26 that the coating suffers 
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a static divergence at 1100=0.. The accuracy of this static instability pre- 
diction is not known, but it appears probable that it will be difficult to achieve 
the hoped for reduction in flow noise because of the coating's own instability. 

Equation (51) and Fig. 11 are valid for an asymptotically thick coating. A 
reduction in thickness would merely modify the constants in Eq. (51). That is, 
in general, 

P*- 
P * 

(52) 1 + mx Q + m, ß-' 

where   mi    and   m2    are functions of thickness ratio   (h/8 ), with asymp- 
totic values of 1.07 and 0.94, respectively.   Figure 12 shows calculated val- 
ues of these constants as a function of thickness.  It is seen that a thin coating 
is surprisingly effective and that there is no point in increasing the coating 
thickness beyond   h = 5 . 

•   It is necessary to check these calculations by computing the power spectrum 
in the presence of the coating, since it was assumed in Eq.   (44) that   0   was 
identical in shape to the rigid wall spectrum of Fig. 7 and merely scaled up or 
down in magnitude.   To check this point, we must calculate the autocorrelation 
R(0,0,to) from Eq.   (6) and take its inverse Fourier transform.   It is sufficient 
to consider only the excess of   R   over the rigid wall value   R0, which we may 
put in normalized form by defining the following factor   f: 

/(*„*) = 
/? (0.0,/„*)-/?„ (0,0,*,,*) 

Ä (0,0,0)-*» (0,0,0) 
(53) 

Some numerical results for f(t*) are compared in Table 3 with the exponential 
approximation   e -12 

Table 3 

NORMALIZED EXCESS AUTOCORRELATION FOR A THICK COATING 

t* 
0 «O e-12 t* 

0.0 1.000 1.000 

0.1 0.296 0.301 

0.2 0.086 0.091 

0.3 0.034 0.027 
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It is seen that the exponential approximation is sufficiently accurate to use 
in estimating the shift in the power spectrum, which is easily evaluated for an 
exponential: 

A<*> ~ f
K e~u'"' cos (ü)* t„*) dt„* —■ . (54) 

Jo 1 + (ü)*/12)-' *    ' 

This additional power spectrum should be added to   0O   to account for the 
presence of the coating.   Equation  (54) indicates that the corrected spectrum 
should be very similar in shape to the rigid wall spectrum, thus verifying the 
assumption made by Eq.   (44). 

Equation  (54) predicts that the compliant coating has the effect of essen- 
tially raising or lowering the entire power spectrum curve until the area 'inder 
it - the mean-square pressure - equals the value predicted by Eq.   (52).   How- 
ever, at present, it would be nearly impossible to verify this effect experi- 
mentally with the transducers now available.   For, from Figs. 9 and 10, we 
see that the time-averaged effect of a compliant coating is confined to a very 
narrow area about the point being studied, with a diameter roughly equal to 
one-tenth of the boundary layer thickness.   Thus, a transducer capable of 
measuring such localized effects would need a shank whose diameter was an- 
other order of magnitude smaller, say, one-hundredth of the boundary layer 
thickness.   Since the smallest available transducer has a shank diameter of 
approximately 0.1 inch, it is seen that accurate spectrum measurements would 
require a boundary layer thickness of ten inches or greater.   Even then, the 
coating dynamics would surely be modified by the presence of the relatively 
rigid shank protruding through its thickness. 

PRESSURE ATTENUATION BENEATH A COMPLIANT COATING 

Since the previous analysis does not predict any clearly attainable u^ise 
reduction at the upper surface, it is natural to look elsewhere for a practical 
solution to the problem.   One possibility is the expectation that the pressure 
fluctuations at the "upper" or boundary layer surface might be attenuated 
through the coating thickness and be much smaller at the "lower" or bonded 
surface. 

Returning to the previous traveling wave study, we may define an attenua- 
tion factor    "F"   as a lower-to-upper pressure ratio for any given traveling 
wave of the form of Eq.   (7): 
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F - I^LzJll (55) 
o22 (0) 

The dimensionless factor   F    should depend upon frequency   (ah), speed ratio 
(Uc/C,), Poisson's ratio    (n),   the type of bond (shearless or bonded),and the 
geometry (plane stress or plane strain). 

If we confine our attention to the bonded coating in a condition of plane 
stress, the attenuation factor    F   may be written in terms of the quantities 
r,,   C,   and  T,   from Eqs.  (11) and (18), as follows: 

rir.,(Ur/C.)-[2Ct-(l + r£) C,] 
C, C, (T. - r, r, r,) [2 (1 + r,a) A, + 4r, r./Js] 

(56) 

where   .A.!    and   A3    are the constants given by Eq.    (19).  At very low fre- 
quencies,    F   is unity,   while at very high frequencies    F   is inversely pro- 
portional to   C2, that is, exponentially decreasing.   Figure 13 shows the fre- 
quency variation of   F   for Poisson's ratio equal to one-Liif and for various 
subcritical speed ratios.   It is seen that the pressure attenuation through the 
thickness is much greater at low speeds. 

With the frequency distribution of   F   known, the total attenuating effect of 
a bonded coating is determined by simple integration over the frequency range. 
If   0(w )   is the power spectrum of pressure at the upper surface, the mean- 
square pressure at the lower surface is given by 

F-1 (~h) =2  f   F*<t»((o) dw 
Jo 

(57) 

Since    F   is a function of   (ah)    and   0   is a function of    ( a b ),   the in- 
tegral in Eq.   (57)  depends upon the thickness ratio    (h/ö ).   If we take    0   to 
be given by Eq.   (44),   and if   F   is given by Eq.   (56), then Eq.   (57)  maybe 
evaluated numerically.   The results are shown in Fig.   14,   indicating the re- 
duction in mean-square pressure beneath the surface as a function of speed ratio 
(Ur/C») for various coating thicknesses.   It is seen that even a rather thin coat- 
ing will cause a substantial mean-pressure reduction through its thickness, 
particularly at low speeds.   One also notes that a very thick coating will give a 
dramatic decrease in lower surface pressure level. 

23/24 

...  ,:_.., ,,——o* -'■■■:.■>   ... 



LIST OF REFERENCES 

■> 

' M.O. Kramer, ''Boundary Layer Stabilization by Distributed Damping,'' Journal 

of Aeronautical Sciences, vol. 24, 1957, p. 459. 

o 
M.O.   Kramer,   ''Readers  Forum,"  Journal  of Aero/Space Sciences,   vol.   27,   1960, 

p.   68. ~~~ " ~~ 

M.O. Kramer, "Boundary Layer Stabilization by Distributed Damping," Journal 

American Society Naval Engineers, vol. 72, February 1960, p. 25. 

F.W. Boggs and N. Tokita, "A Theory of Stability of Laminar Flow Along Com- 

pliant Plates," Third Symposium on Naval Hydrodynamics, Schereningen (The Hague), 

Netherlands, September 1960. 

T.B. Benjamin, "Effects of a Flexible Boundary on Hydrodynamic Stability," 

Journal of Fluid Mechanics, vol. 9, 1960, p. 513. 

T.B. Benjamin, "The Threefold Classification of Unstable Disturbances in 

Flows over Flexible Surfaces," Journal of Fluid Mechanics, vol. 16, p. 436. 

7 
T. Nonweiler,   Qualitative Solutions of the Stability Equation for a Boundary 

Layer in Contact with Various Forms of Flexible Surfaces,   British A.R.C. Report No. 

22,670, 196Ii. 

8 
J.H. Linebarger, "On the Stability of a Laminar Boundary Layer over a Flex- 

ible Surface in a Compressible Fluid," S.M. Thesis, Department of Aeronautics and 

Astronautics, Massachusetts Institute of Technology, 1961. 

9 
M.T. Landahl, "On the Stability of a Laminar, Incompressible Boundary Layer 

over a Flexible Surface," Journal of Fluid Mechanics, vol. 13, 1962, p. 609. 

F.D. Hains, Comparison of the Stability of Poiseuille Flow and the Blasius 

Profile for Flexible Walls, Boeing Scientific Research Laboratories, Flight Sciences 

Laboratory Report No. 75, 1963. 

R.E. Kaplan, "The Stability of Laminar Incompressible Boundary Layers in the 

Presence of Compliant Boundaries," Sc. D. Thesis, Massachusetts Institute of Tech- 

nology, Department of Aeronautics and Astronautics, 1964. 

12 W.A. VonWinkle, "An Evaluation of a Boundary Layer Stabilization Coating," 

USL Technical Memorandum No. 922-111-61, 1961. 

13 F.W. Boggs and H.R. Frey, The Effect of a La.niflo Coating on a Small Planing 

Hull Having Zero Deadrise, U.S. Rubber Company Report, June 1961. 

25 

«S«tWU144lMPMMini«t«»'>>«.»ArMl,; 
■ 



J. Laufer and L. Maestrello, "The Turbulent Boundary Layer over a Flexible 

Surface," The Boeing Company, Document No. D6-9708, 1963. 

15 
J.E. Ffowcs Williams and R.H. Lyon, The Sound Radiated from Turbulent Flows 

near Flexible Boundaries, BBN Report No. 1054, 1963. 

16 J.E. Ffowcs Williams, Reynolds Stress near a Flexible Surface Responding to 

Unsteady Air Flow, Bolt Beranek and Newman Inc., Report No. 1138, Cambridge, Massa- 

chusetts, June 1964. 

17 G.M. Corcos, "The Structure of the Turbulent Pressure Field in Boundary- 

Layer Flows," Journal of Fluid Mechanics, vol. 18, 1964, p. 353. 

18 H.P. Bakewell, G.F. Carey, J.J. Libuha, H.H. Schloemer, and W.A. VonWinkle, 

Wall Pressure Correlations in Turbulent Pipe Flow, USL Report No. 559, 20 August 1962. 

19 W.W. Willmarth and C.E. Wooldridge, "Measurements of the Fluctuating Pres- 

sure at the Wall Beneath a Thick Turbulent Boundary Layer," Journal of Fluid 

Mechanics, vol. 14, p. 187. 

20 S. Gardner,   On Surface Pressure Fluctuations Produced by Boundary Layer 

Turbulence, Technical Research Group Inc., Report No. TRG-142-TN-63-5. October 1963. 

21 S. Gardner, "On Surface Pressure Fluctuations Produced by Boundary Layer 

Turbulence," Acustica, vol. 16, No. 2, 1965/66, p. 67. 

22 F.M. White, A Unified Theory of Turbulent Wall Pressure Fluctuations, USL 
Report No. 629, 1 December 1964. ______ 

23 
H.H. Schloemer, Effect of Pressure Gradients on Turbulent Boundary-Layer Wall- 

Pressure Fluctuations, USL Report No. 747, 1 July 1966. 

9 A 
R.H. Kraichnan, "Pressure Fluctuations in Turbulent Flow over e Flat Plate," 

Journal of the Acoustical Society of America, vol. 28, No. 3, May 1956, p. 378. 

25 N. Tokita and F.W. Boggs, Theoretical Study of Compliant Coatings to Achieve 

Drag Reduction in Underwater Vehicles, U.S. Rubber Company, Final Report, U.S. Navy 

Contract Nonr 3120 (00), 16 May 1962. 

26 
F.W. Boggs and N. Tokita, Hydro*lastic Behavior of Compliant Coatings, U.S. 

Rubber Company Report, Navy Contract Now-60-0676-C, 19 June 1963 

26 

->.-»«mwu»«»«ta>m>«iwi^«-»~"-'"'«*  »— ««ii »«...i.m .«mm.nl'M'i»«^'»-'* 



«f»5 

Fig.   1   -  Schematic   of  the  Flow Geometry 
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